
Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

33

Asian Journal of Information Science and Technology (AJIST)

Vol.4.No.1. 2016 pp 33- 38

ISSN: 2231-6108

available at: www.goniv.com

Paper Received :08-10-2016

 Paper Accepted:22-12-2016

 Paper Reviewed by: 1. R. Venkatakrishnan 2. Dr.G.Ramesh

Editor:Prof.P.Muthukumar

--

Self-Aware Message Validating Algorithm for Preventing XML Based

Injection Attacks

A.Ramalakshmi

Asst. Professor

Department of Computer Science

Thiruvalluvar College

Papanasam, Vickramasingapuram

Tamilnadu-627425

ABSTRACT

Web Service attacks, generally called

XML-based attacks, occur at the SOAP

message level and thus they are not readily

handled by existing security mechanisms in

earlier firewalls. So as to provide robust

security mechanisms for Web Services,

XML filters have recently been introduced

for Web Services security. In this research,

a framework for dynamic XML filters are

proposed, called self-aware message

validating filter for XML based attacks,

which supports detection and protection of

XML-based attacks in real-time. A detailed

design of the injection filter security model

has been provided by validating schema

information of the message with detection

and protection policies. The information in

the form of SOAP request is passed

between client and server. Then it is

processed in the Web Services opening an

array of XML based injection attacks, for

example, oversized message, message

replay, parameter tampering, coercive

parsing and semantic URL attacks. These

attacks, among others, will be the focus of

this section. Typical XML-based attacks

include XSS injection attack, XPath

injection attack, oversized message attack,

replay attack, parameter tampering attack,

XML injection attack, SQL injection attack

and coercive parsing attack. For example,

an XSS injection attack takes advantage of

the weakness of CDATA of the parser of a

service provider to allow malicious script

in XML documents, forms or other

methods in order to deform the information

of the Website.

1.INTRODUCTION

An oversized message attack is a type of

flooding attacks, where an attacker creates

enormous level of traffic to a Web Service

to exhaust its resources at the server side

and parameter tampering attack can crash

the server by sending unacceptable

parameters. An XML-based attack can also

be in a form of a distributed multi-faceted

attack, Most of the XML-based attacks

come in unpredicted format and so far the

performance has not been studied carefully.

For example, the attacker finds the XML

tag for administrator then inserts that tag to

act as high privileged user like

administrator. This privilege violation

would not be prevented the conventional

firewall. Thereafter the attacker imitates the

administrator’s activities and gains all

details of user realms.

http://www.goniv.com/

Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

34

Many security approaches have been

developed for protecting Web Services, but

they are vulnerable to predict and prevent

the variety of attacks such as an XDoS

attack. Some business concerns hesitate to

adopt service oriented technologies because

of lacking technology of robust security

mechanism to prevent XML based attacks.

An approach to defend against XML-based

attacks at the application level is achieved

in this work through self-aware message

validating algorithm is proposed. It

supports detection of XML-based attacks in

real-time.In this research, the validation

approach is used as a security mechanism

and presented a framework for XML based

injection filter. The architecture of the

XML based injection filter service model is

illustrated in Figure 1.1. As shown in the

figure, an injection filter lies between

service consumers and a service provider,

and can be installed either on the same or a

different machine where the actual Web

Services are deployed. It interacts with

service consumers through its User

Interface (UI), which is responsible for

receiving requests from and sending

responses back to the login service.

1.1 ARCHITECTURE OF XML BASED

INJECTION FILTER SERVICE

There are five major components

supporting the filters, namely oversized

message filter, message replay filter,

parameter tampering filter, coercive parsing

filter and semantic URL filter, which

process the incoming request and state-

based information, respectively. In the

injection filter security model, input

validation and protection are the major

features for providing user access control,

which ensure that only valid users are

allowed to access certain Web Services.

1.2 Parameter Tampering Filter

The attacker adjusts the parameters in a

SOAP message in an attempt to redirect the

input validation in order to access

unauthorized information. A change in

integrity of the parameters is to detour the

input validation and gains unauthorized

access of some confidential functionality of

Web Services. Because, the input

parameters of an operation are given within

a WSDL document, the hacker can play

with different combinations of parameter

patterns in order to access the unauthorized

information. This filter checks the XML

schema definition of received message for

data type, null values. This filter checks the

parameter for valid data. If it fails, then, it

throws an error to the sender once. Even if

the sender continues, his/her misbehaving

with parameters leads to the disconnection

of communication.

1.3 Coercive Parsing Filter

This filter verifies the namespaces and

version mismatch received in the WSDL

and SOAP files. This filtering policy used

the fault values in SOAP fault code. The

filter verifies the received message for

wrong format of SOAP message by

generating SOAP fault code. This filter

blocks the input that has a strange format.

This policy used the values in SOAP fault

code. They are version mismatch and must

understand fault code

1.4 Oversized Message Filter

The XML parsing of the service provider is

directly affected by the size of the SOAP

message. As a consequence, large amounts

of Central Processing Unit (CPU) cycles

are consumed when presented with large

documents to process. A hacker can send a

payload that is in alarming rate to exhaust

systems resources. So, the filter is designed

to refine the size of the message,

requisition resources presented in the

incoming message. Hence, the filter does

the checking of three important parameters

for the received SOAP message. First, it

sets a request timeout to prevent infinite

delay attacks. Then, it limits the amount of

data that it retrieves.

1.5 Message Replay Filter

Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

35

A hacker can resend the SOAP message

requests to access the Web Service using

other’s login credentials. This kind of Web

hacking will be escaped as a legitimate

request because the source IP address is

valid, the network packet attributes are

valid and the HTTP request is well formed.

Though, the business behavior of replay

attacker is valid with unmatched

parameters of the information is treated as

an XML intrusion. Hence, the filter assigns

an identifier for each incoming message

and stored into the database to identify the

replayed message. After that, the filter

catches and matches the identifier of

incoming messages and uses the replay

detection policy to identify and reject

messages which match an entry in the

database of replay detection filter.

1.6 Semantic URL Filter

This is protected by giving token and

timestamp for expiration. In this way, the filter

is designed to protect the Web Service

provider from the attack. The server and client

shares the NONCE (Number used ONCE) for

mutual identification. The random number

generator is used the process identity of task

to generate the nonce. Then, it is added with

time stamp calculator to maintain the message

expiration of the client/server. These

parameters are shared either of the

client/server to protect the integrity of the

message.

2. ALGORITHM OF SELF-AWARE

MESSAGE VALIDATION FOR XML

BASED ATTACK INJECTION FILTER

A Web Service communicates with other

applications over a network. There is no

surety that the incoming message is

requested from legitimate user, though the

incoming request coming from authorized

IP address. Meanwhile, the intruder

includes some parameter to gain some data

or to redirect the flow to some proprietary

Web links. Based on the input information,

the XML Request Handler can detect and

verify XML based attack in real-time. The

corresponding tables are created in the user

information databases, which are used to

store not only the current state and user

information, but also the previous states

and recent user information that are useful

for attack detection and verification.

2.1 Detection of XML Based Injection

Attacks

The XML request handler module is

responsible for the dynamic detection and

verification of the XML-based injection

attacks by checking both the SOAP

message and the parameters passed to a

Web Service operation. The algorithm

proposed by the XML request handler

module is depicted in Figure 5.2 and

explained how the input is treated as

malformed input or not. As shown in the

figure, when a SOAP message with a valid

user request is sent to the XML request

handler module, there the input is refined in

all filters to verify the attack. This has been

implemented by SAX parser of the server

side filter to receive the legitimate schema

of incoming message.

The process of detecting other types of

XML-based attacks involves two major

steps, which are detection of malformed

SOAP messages and protection from

attacks. Malformed SOAP messages are

detected using the SOAP message

validator. For example, to detect XML

attacks, the handler module analyzes for

possible flooding requests and keeps track

of the allowable message size and the

nesting depth in the incoming XML

messages. If a certain type of attack is

detected, the handler module will attempt

to verify the attack using additional

evidence from the blacklist database. Once

an attack is confirmed, the SOAP message

is rejected, and sent to the XML request

handler module, where a rejection message

is generated and sent back to the service

consumer. In addition, the blacklist

database is updated accordingly with the

information related to the attack.

Otherwise, the SOAP message is sent to the

Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

36

deployed Web Service for service

invocation, and after the service invocation,

the results are sent back to the service

consumer. The XML based attacks are

categorized into five significant attacks and

the protection mechanisms are

implemented to refine and report the

malformed input. First, the input filter is

received in server side is passed to all

filters to find the attack vectors. There, the

input is passed to various input verification

policies on parsers. Next, the captured

input containing attacks are blocked and

reported in XML request handler. Last, the

legitimate input is forwarded to service

provider.

2.3 Parameter tampering filter

In this, filter the received parameters are

checked for data type, number of parameter

and null values. This filter checks the

parameter for valid data; if it fails, then, it

throws an error to the sender once.

Even if the sender continues, his misbehaving

with parameters leads to the disconnection of

communication. To solve this problem, the

proposed XSS filter was created with

tamperchecker function as given in Figure 5.3.

It checks the arguments for null values, data

type, start element and end element of the

received request from the client. The

validation process itself is hidden from the

client. The message validation of parameter

tampering filter makes a number of checks to

validate the message. That includes the

verifying of the message payload is well-

formed, means to verify whether the document

follows all rules of recommended by W3C or

not, also ensures to a predefined schema with

acceptable data types and range of values. If

the request succeeds all the validation checks

that are performed by the message validator,

then the service processes the message and

forwards the request to the Web Service

provider.

2.8 Oversized message filter

Denial of Service attacks happened by

exhausting resources available in server

side. Such attacks aim at reducing service

availability by exhausting the resources of

the service’s host system, like memory,

processing resources or network

bandwidth. It is performed through query a

service using a very large request message,

which is called as over sized message. An

oversized message attack is simple to

perform, due to the high memory

consumption of XML tags and its long

processing duration. The total memory

utilization to process one SOAP message is

higher than the message size.

In the filter, the incoming message is checked

for three important parameters. First, it sets a

request timeout to prevent infinite delay

attacks. Then, it limits the amount of data that

it will retrieve. Last, it restricts the message

from retrieving resources on the local host.The

algorithm is depicts how it sets the values of

attributes. The service provider had to set its

maximum request length. The filter loaded the

XML document and change XSD value

maxMessageLength=1024 or any required

buffer size. This compares the size of the

request against the maximum allowable size

that is specified for request messages.In the

filter, the incoming message is checked for

three important parameters. First, it sets a

request timeout to prevent infinite delay

attacks. Then, it limits the amount of data that

it will retrieve. Last, it restricts the message

from retrieving resources on the local host.

2.11 Message replay filter

An attacker attempt to resend SOAP requests

to repeat sensitive transactions is called the

message replay attack. Here, the client side

message is assigned with an identifier and

time stamp then send to the server for

validation purpose. Thereafter, the filter

captures the identifier of incoming messages

and rejects messages that match an entry in

the replay detection database. If the message

identifier is valid because of its nonexistence,

the filter compares the message timestamp to

its clock time value for synchronization. If the

message identifier has unacceptable identifier

or any time stamp mismatch then, the message

Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

37

is rejected. This can be done by calculating

elapsedTime, cacheLifeSpan and

maxMessagePeriod The time tolerance is the

acceptable value time difference between the

sender and the maximum message period is

configured as 600 seconds. The filter

calculates the elapsed time period of the

message by deducting the created time value

on the message from the present server time.

For a message that appears have been created

in the past or if the server and message

creation times are equal will be rejected.

Otherwise the message will be accepted only

when its message age is less than or equal to

the values for the maximum message period

parameter and the elapsed time setting.

Cache Life Span = (MMP + ET * 2)

CLS -

 CacheLifeSpaninSec

onds

MMP -

 MaximumMessa

gePeriod

ET - ElapsedTime

The algorithm of message replay filter is

given in Figure 5.7. That accepts the XML

document and retrieves its attribute through

its parser. First it gets CLS and MMP

attributes of incoming message. Then it

calculates expiration to find that as an old

message or new one. This is calculated by

subtracting current time and time stamp of

the received message. Then the difference

value is assigned as the message period and

stored into cache database. Next, it checks

for messages where sender's clock is slower

than the server’s clock for first condition.

Finally, it accounts for messages where the

sender's clock is faster than the server’s

clock through the second condition. Then

the identifier is stored into database. The

unique identifier for the message is

collected and saved in the replay finder

cache before processing the request. The

unique identifier is also used to solve the

concurrency message collision issues. In

scenario of two messages arrived at same

time will be solved, if a second message

arrives before the first message has finished

executing. Some of the steps to be

performed when attempting to detect

replayed messages can harmfully affect

system response time. For example,

verifying the identifier of each incoming

message and timestamp is computationally

exhaustive will create XDoS.

Algorithm of message replay filter

3. Conclusion

The injection filter has been configured and

embedded in administrator’s. The

administrator can enable or disable the filter

based on their requirement. This feature will

improve the speed of the server. The proposed

system is compared with various existing

systems namely input validator, AntiXSS

filter, IE explorer, Opera and Firefox. The

comparative analysis has been carried out with

respect to number of attacks prevented.This

filter protects Web Service attacks from

intruders by verifying the attack from

exception handler and throws exceptions to

the client

Reference

1) Ahmad, K, Shekhar, J & Yadav,

KP 2011, ‘Coalesce Techniques to Secure net

Applications and Databases against SQL

Injection Attacks’, Electronic Journal of

engineering science and data Technology,

vol. 3, no. 1, pp. 26-30.

2) Antunes, N & Vieira, M 2011,

‘Enhancing Penetration Testing with Attack

Signatures and Interface observance for the

Detection of Injection Vulnerabilities in net

Services’, Proceedings of IEEE International

Conference on Services Computing, pp. 104-

111.

3) Antunes, N & Vieira, M 2012,

‘Defending against net Application

Vulnerabilities’, IEEE laptop Society, vol.

45, no. 2, pp. 66-72.

Self-Aware Message Validating Algorithm for Preventing XML..A.Ramalakshmi

38

4) Axelsson, S 2000, ‘The Base-Rate

misconception and also the problem Of

Intrusion Detection’, ACM Transactions on

data and System Security (TISSEC), vol. 3,

no. 3, pp. 186-205.

5) Bace, RG, 2000, ‘Intrusion Detection’,
Macmillan Technical publication,

Indianapolis, IN, USA.

6) Balzarotti, D, Cova, M, Felmetsger, V,

Jovanovic, N, Kirda, E, Kruegel, C &

Vigna, G 2008, ‘Saner: Composing Static

and Dynamic Analysis to Validate

sanitisation in net Applications’, Proceedings

of the IEEE conference on Security and

Privacy, pp. 387-401.

7) Bebawy, R, Sabry, H, El-Kassas, S,

Hanna, Y & Youssef, Y 2005, ‘Nedgty:

net Services Firewall’, Proceedings of the

IEEE International Conference on net

Services (ICWS’05), pp. 597- 601.

8) Bertino, E, Martino, L, Paci, F &

Squicciarini, A 2010. ‘Security for net

Services and Service-Oriented

Architectures’, Springer house, Incorporated,

first Edition, out there from: Springer, ISBN-

10: 3540877894.

9) Bidou, R 2009, ‘Attacks on net

Services’, OWASP, out there from

:<https://www.owasp.org/images/6/6b/200

9-05-06-OWASPFR-WebServices.pdf>.

[20 Gregorian calendar month 2013].

10) Binbin Qu, Beihai Liang, Sheng Jiang

& Chutian Ye 2013, ‘Design of

Automatic Vulnerability Detection System

for net Application Program’, continuing of

Fourth IEEE International Conference on

software system Engineering and repair

Science (ICSESS), pp. 89-92.

11) Bisht, P., Sistla, AP., &

Venkatakrishnan, VN 2010, ‘TAPS:

mechanically getting ready Safe SQL

Queries’, Proceedings of the seventeenth

InternationalConference on laptop and

Communications Security’2010, Chicago,

USA, pp.645-647.

12) Boyd, SW, Kc, GS, Locasto, ME,

Keromytis, AD & Prevelakis, V 2010,

‘On the final relevance of Instruction-set

Randomization’, IEEE Transactions on

Dependable and Secure Computing, vol. 7,

no. 3, pp. 255-270.

13) Capizzi, R, Longo, A,

Venkatakrishnan, VN & Sistla, AP

2008, ‘Preventing data Leaks Through

Shadow Executions’, In Proceedings of the

pc Security Applications Conference IEEE,

pp. 322-331.

14)Chang, CC & Lee, CY 2012, ‘A

Secure Single Sign-on Mechanism for

Distributed laptop Networks’, IEEE group

action on Industrial physical science, vol.59,

no.1, pp. 629-637.

